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The problem of a finite-amplitude free disturbance of an inviscid shear flow on the 
beta-plane is studied. Perturbation theory and matched asymptotics are used to  
derive an evolution equation for the amplitude of a singular neutral mode of the Kuo 
equation. The effects of time-dependence, nonlinearity and viscosity are included in 
the analysis of the critical-layer flow. Nonlinear effects inside the critical layer rather 
than outside the critical layer determine the evolution of the disturbance. The 
nonlinear term in the evolution equation is some type of convolution integral rather 
than a simple polynomial. This makes the evolution equation significantly different 
from those commonly encountered in fluid wave and stability problems. 

1. Introduction 
Asymptotic methods have been used successfully to derive approximate solutions 

of the equations of fluid motion. The problem of small two-dimensional disturbances 
of an inviscid incompressible basic flow U ( y ) i  has been studied for some time. 
Rayleigh (1880) considered infinitesimal disturbances and presented the seminal ideas 
for the linear stability theory of a homogeneous flow. The extensive results which 
followed have been reviewed by Drazin & Howard (1966). More recently, perturbation 
series and multiple scales have been employed to study finite-amplitude disturbances. 

A major difficulty in this asymptotic analysis is the treatment of the flow in the 
critical layers, places where the basic-state velocity U(y) equals the phase velocity 
c of the disturbance. The linearized equations of fluid motion can be solved by taking 
Fourier transforms in x and t. The dependence of a Fourier mode on y is given by 
an ordinary differential-equation boundary-value problem, which also determines the 
dispersion relation. This differential equation is in general singular a t  places where 
U - c  vanishes. The singularity in the equation produces a singularity in the velocity 
of the disturbance. The singularity worsens for higher-order terms in a perturbation 
series. 

To describe a finite-amplitude disturbance in a shear flow with critical layers, the 
equations of motion must be solved separately inside and outside the critical layers, 
and then the solutions must be matched. As time evolves the effects of small viscosity 
and nonlinearity become important earlier inside the critical layers than they do 
outside. Schade (1964) ; Huerre (1980) and Burns & Maslowe (1983) derived amplitude- 
evolution equations for small disturbances in inviscid flows where the effect of 
viscosity smooths out the flow in the critical layers. Benney & Bergeron (1969) ; Davis 
(1969) ; Kelly & Maslowe (1970) ; Maslowe (1972) and Haberman (1972) considered 
how nonlinear effects, rather than, or in addition to  viscous effects, might determine 
the flow in the critical layers. They calculated small, steady disturbances with 
strongly nonlinear critical-layer flows. The idea of including nonlinearity in the 
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critical-layer analysis was later used in deriving evolution equations for small 
disturbances. Benney & Maslowe (1975) and Huerre & Scott (1980) studied homo- 
geneous shear flows, and Brown & Stewartson (1978b) studied a stratified shear flow. 
Redekopp (1977); Maslowe & Redekopp (1979, 1980) and Stewartson (1981) studied 
disturbances with large horizontal scale in flows with critical layers. Stewartson (1978, 
1981), Brown & Stewartson (1978a, 1980,1982a. b )  and Warn & Warn (1978) studied 
forced disturbances in flows with critical layers. 

The purpose of the present study is to understand better how the critical-layer flow 
evolves when the effects of nonlinearity, viscosity and time dependence are all of 
comparable importance and how this in turn effects the evolution of the disturbance 
outside the critical layers. The particular problem chosen is that of a finite-amplitude 
disturbance of a marginally stable shear flow in the beta-plane model of Rossby et 
al. (1939). Outside the critical layers the disturbance is assumed to be, to lowest order, 
a singular neutral mode of the linearized equations of motion. 

There are a t  least three distinguishing features of this analysis. First, the flow inside 
the critical layers is not assumed to be steady or quasi-steady ; the vorticity equation 
there depends explicitly on time. Secondly, the flow in the critical layers is weakly 
nonlinear, just as is the case for the outer flow. Each term in the perturbation series 
for the critical-layer flow is governed by a linear equation. The nonlinear terms enter 
as non-homogeneities. Thirdly, the nonlinear term in the evolution equation for the 
disturbance comes only from nonlinear interactions inside the critical layers. The 
nonlinear interactions outside the critical layers are not as strong. 

2. Formulation 
The flow under consideration is incompressible, homogeneous, two-dimensional 

and unbounded. It is convenient to use a stream function Y to represent the velocity 
field. The vorticity equation on the beta-plane is 

-+ Y -- Yx- VZ!P+PYx = VV2V2Y, 
E t  y a x  a ay 

where x represents longitude and y represents latitude. The parameter P is the 
constant approximation to the y-derivative of the Coriolis parameter, and u is the 
kinematic viscosity. All of the above variables and parameters have been made 
dimensionless with respect to the magnitude of the velocity shear and the length of 
the shear layer in the basic state flow. 

The basic-state velocity is U,(y, t )  i. It depends on time because of the slow viscous 
dissipation. On the timescales considered in this problem the basic flow can be 
accurately represented by a power series in vt : 

U(y) is an arbitrary function with the property that U+ U ,  and u“ + 0 as y -+ & OC) . 
Only the first term in the above series contributes t o t h e  amplitude-evolution 
equation for the disturbance. An alternative to having a slowly changing basic flow 
is to assume an artificial body force that cancels the effect of viscous dissipation and 
preserves a steady basic state. 

A small two-dimensional disturbance of magnitude B is now added to the basic 
flow. It is presumed to propagate in the x-direction with a real phase speed c 
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determined by linear-stability theory. In  addition to its dependence on x-ct and y ,  
the disturbance also depends on a slow time variable 

T - p t ,  p 4  1. (2.1) 

Following standard perturbation methods the stream function $ of the disturbance 
is expanded in powers of e. The requirement that no secularities be present in the 
expansion determines the evolution of the amplitude of the disturbance in terms of 
T.  In  terms of this new variable the vorticity equation becomes 

A Galilean transformation has been employed to replace x- ct by x. 
and p is determined by balancing the effect of 

slow time dependence and the effect of small nonlinearity. The disturbance is 
assumed to be uniformly small initially, and then the magnitudes of the effects of 
time-dependence and nonlinearity are calculated. These effects create secular terms 
in the perturbation expansion for the stream function. The balance is achieved by 
choosing the earliest time (largest p)  for which these secularities are the same size. 
The evolution equation then arises from the condition that the sum of the secularities 
vanishes. 

The relationship between e a n d p  found for this problem is not one used previously, 
and a derivation is now given. Outside the critical layers the magnitude of $ and 
its derivatives is O ( E ) .  The advective nonlinearities in the vorticity equation produce 
terms in the series for $ with magnitudes O(e2), O(e3) ,  etc. The largest of these which 
creates a secularity in the perturbation expansion is the O(e3)  term. This explains the 
cubic nonlinearities which often arise in evolution equations for disturbances with 
finite wavenumber. Inside the critical layers, the magnitudes of @ and its derivatives 
are different. The dominant terms in (2.2) are ,qhuuT, ( U - c )  @yux, (UN-P) v,hZ, and 
possibly the viscous term. Balancing the p@uuT and ( U -  c )  @uyx terms determines 
the thickness of the critical layer to be O(p). Initially, the disturbance vorticity is 
O(e) ,  but the balance between p$uuT and (u" - P )  $x causes it to become O(ep-l) for 
T of order unity. Because the critical layer has thicknessp, @uug = O ( E ~ - ~ ) .  Balancing 
p$'yuT with the advective nonlinearity $x$'yyu gives an O(e2p-3) contribution to @uy. 
This quadratic nonlinearity itself does not create a secularity in the expansion for 
$. As is often the case, i t  is necessary to proceed to cubic nonlinearities. The 
interaction of $x = O(e)  and $uuu = O(€2p-4) makes an O(e3pP5) contribution to @uu. 
When this is integrated across a critical layer, an, O ( C ~ ~ - ~ )  jump in the velocity @u 
is produced. This effect on the outer flow is larger, and therefore more important, 
than the O(e3) effect mentioned above. Balancing the O ( E ~ ~ - ~ )  nonlinear effect with 
the O(ep) effect of slow time yields the following relation between e and p :  

The proper relationship between 

2 p = € 5 .  

Viscosity is also scaled in terms of e :  

v = hp3 = h€t. 

The parameter h is order unity and is similar, but not identical with, that introduced 
by Benney & Bergeron (1969). The relationship between v and p is what one would 
normally expect in a viscous layer. This is not, however, a viscous critical layer in 
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the sense that viscous effects dominate the flow. The parameter h can be set 
identically to zero without changing the following analysis or resulting evolution 
equation in any essential way. Viscosity is scaled in the above manner because if i t  
is smaller, then it has no effect on the evolution of the disturbance over the time 
considered, and, if it is larger, then its effect dominates the critical-layer flow. 

The parameter P is scaled in the following way : 

P = /%+PIP = P,+Pl&i 
The paramater Po is some basic value, and the parameter P1 is a measure of the 
deviation of from it. For the following analysis and resulting evolution equation 
to make the most sense, Po should be the value that makes the flow marginally stable. 

3. Outer flow 

following perturbation series : 
Outside the critical layers the stream function of the disturbance is written as the 

$ = &$'1+&@2+&+?rg+... . 

The first term in the series is a mode of the linearized version of the vorticity equation 
( 2 . 2 )  with longitudinal wavenumber a. The second term in the series 1s a combination 
of modes with wavenumbers 0 and 2a which are forced by the flow in the critical 
layers. Although there 1s a component of the critical-layer flow with the proper 
magnitude and wavenumber to force these modes, this component produccs no 
velocity jump across the critical layers. So, in fact, $2 is zero. The component of the 
third term in the series with wavcnurnher a obeys a non-homogeneous equation. The 
solvability condition for this equation leads to the evolution equation for the 
amplitude of the disturbance. 

3.1. The trmdr of the Einrurized equation 

The first term in the series for $ has the form 

$1 = A ( T )  #(y) elas+ *, 
where a is assumed to be positive throughout this paper The latitudinal structure 
$(y) satisfies the following equation derived by Kuo (1  949) : 

There are boundary conditions on $(y) as y approaches infinity. (The choice to 
consider an unbounded rather than a bounded flow does not effect the analysis in 
a major way.) As y approaches infinity, $(y) has the following asymptotic behaviour: 

(3 .3a)  

The latitudinal wavenumber k ,  may be either imaginary or real, corresponding to 
a decaying or radiating mode respectively. If k ,  is imaginary then ik, must have the 
sign that guarantees a decaying solution as i+ co. If k ,  is realthen its sign is 
determined by the radiation boundary condition. The group velocity in the latitudinal 
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direction should have the sign & for y+ & 00. In  this problem the group velocity 
is 

So the sign of k - + is chosen as follows : 

ik, 5 0 for k2+ - < 0, (3 .3b )  

k + P o  3 0 for k: - > 0. (3.3c) 

The solution of the Kuo equation (3.1) subject to the boundary conditions (3.2) 
and (3.3) determines c in terms of 01. One additional piece of information is needed, 
however. That is the jump conditions on the eigenfunction across the critical layers. 
Near a critical layer y = yc the eigenfunction 4 has the following asymptotic 
behaviour : 

The jumps a+-a- and b,-b- are found by analysing the flow in the critical layer. 
There are few known examples of singular neutral modes of the Kuo equation 

(U"-PO =I= 0 at some place where U - c  = 0). There are no examples known to the 
author where the neutral mode of a marginally stable flow is singular. This is no 
reason, however, to doubt their existence. Most of those velocity profiles for which 
the Kuo equation has been solved are symmetric or antisymmetric. Because of these 
symmetries, the neutral modes tend to be regular (U"-p,, = 0, where U - c  = 0). 
Suppose, on the other hand, that a velocity profile lacks symmetry. To be specific, 
suppose that, for each c in the range of possible values of U ,  U - c  = 0 at more than 
one place, and U"does not have the same value at these places. All neutral modes 
must then be singular. Furthermore, sufficiently large Po always stabilizes a shear flow 
with bounded U". The neutral mode that is present when the flow is marginally stable 
is the one of interest. Unfortunately, numerical calculations may be the only way 
to find it. 

Presently, an example is presented to show that singular neutral modes do exist. 
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FIQURE 1. The eigenvalues for the neutral modes of the Kuo equation with U(y) = tanhy. 

The weakness of this example, however, is that the singular neutral modes disappear 
well before the flow stabilizes. The velocity profile U(y) = tanh y has regular neutral 
modes which were discovered by Howard & Drazin (1964) : 

ae = 1-19, 

q5 = (1  - tanh ~ ) : ( l + ~ ) (  1 + tanh ~ ) i ( l - ~ ) .  

The eigenfunctions for these modes decay as y approaches infinity in either direction. 
A radiating neutral mode was suggested by the calculations of Dickinson & Clare 
(1973) and calculated by the author. This mode is singular when it is neutral. Figures 
1-5 show some neutral and unstable eigenvalues for positive values of Po. The 
radiating neutral mode radiates as y+ + co and decays as y-f - co. As Po increases, 
the flow is stabilized. When Po reaches about 0.38, the radiating neutral mode and 
the unstable modes contiguous to it disappear. The flow does not become linearly 
stable, however, until Po = 4 x 3-t. Because of the antisymmetry of U(y) the 
eigenvalues c for negative values of Po are minus the eigenvalues for positive Po. 

Po = - 2 c ( l - c 2 ) ,  - 1  < c < 1, 
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FIQURE 2. The complex wave speeds for modes of the Kuo equation with 
U(y) = tanh y and Po = 0.1. 

FIQURE 3. The complex wave speeds for modes of the Kuo equation 
with U(y) = tanhy and Po = 0.15. 
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cr 

FIQURE 4. The complex wave speeds for modes of the Kuo equation 
with U(y) = tanhy and Po = 0.16. 

3.2. The O ( d )  term 

The solution of the vorticity equation for $2 is similar to the solution for : 

$2 = B(T)$&1)(y)+C(T)q5f)(y)e2i"2+*. 

The functions q5f) and q5g) satisfy the same equation and boundary conditions as 4 
except that  the wavenumber is no longer a but 0 or 201. The jump conditions across 
the critical layers may be different, however. The jumps may arise from the nonlinear 
interactions of the fundamental mode in the critical layers, and so the functions 4f) 
and 4L2) need not be eigenfunctions of the Kuo equation. 

3.3. The O(&) term 

The part of $, with wavenumber a takes the form 

= $3(y,T)eiaz+*, 

and q53 satisfies the following non-homogeneous equation : 

As y approaches infinity, ia4, has the following asymptotic behaviour : 

as y+ fa. 

The first term comes from the solution of the homogeneous equation, and k ,  is given 
by (3.3). The second term comes from the solution of the non-homogeneous equation. 
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FIGURE 5.  The complex wave speeds for modes of the Kuo equation 
with U(y) = tanh y and Po = 0.2. 

cr 

It may become large as y approaches infinity, but this secularity can be removed by 
introducing a 'long ' latitudinal variable. 

Near a critical layer ia6, has the following asymptotic behaviour : 

i43(Y> T) - 1nlY-Ycl {=b+ - AT 

u;(u,"-po)- u; u; u;-po 
b+ - -____ ul." a+] AT(y-yc) 

-T iaP1 b, A(y - yc) +- b, * (T)  (y - y,) + . . .} 
UC UC 

A solvability condition for the above boundary-value problem (3.6) is derived by 
multiplying both sides of the equation by qi and integrating over all y, excluding the 
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critical layers. After integrating by parts the solvability condition becomes the 
following : 

1 ,!lo $!. , e-Zik- Po $: , e2ik+ + v - p o  ’ dy- 2ik-( U-,  - c ) ~  2ik+( U,, - c ) ~  
- A ,  lim [f - 

R + + w  -R (u-c)2 

1 $5 , e-2ik- R 4: , @k+R d2 - [ f dy -k 2iL(  U-, - c) 2ik,( U,,  - c) 
-iap,A lim 

R++w 

Y’, - + i a z  [$3y$-$3$’1 y- - 0. (3.9) 
YC 

The notation # means integration excluding the critical layers. The quantity 
$3Y $ - $, $’ arises from the integration by parts of the left-hand side of (3.6). Its  value 
at y = R contributes the terms with factors of e*lik* R. Its jump across the critical 
layers contributes the last term in the above equation. This jump is determined in 
$4- 

4. Critical-layer flow 

as 
Inside a critical layer, y- yc << 1, the stream function of the disturbance is written 

$ = €+, + €tG2 + €39, + €!& + €:$5 + . . . , 
where *distinguishes this series from that for the outer flow. Terms of size O(EP (1np)Q) 
are included in the terms of size O(eP).  Since 9 is expected to vary on the latitudinal 
lengthscale of p - l ,  a new variable 

Y = E-qy-y,) 

u-c - du; Y+AfU;  P+... , 

LY-p - u ; - p o + € : ( q Y - p , ) + . . .  . 

is introduced to replace y. The basic flow is expanded in a Taylor series in terms of 
Y :  

4.1. The O(s) and O(d)  terns 

Substituting the above series for the stream function into the vorticity equation (2.2) 
yields the following equation for I), : 

The initial condition comes from the assumption that Guy = O ( E )  initially. Thus 
$,, = O(&) initially. The first non-trivial initial value occurs for G5. The solution 
of (4.1) that matches the outer flow is 

4, = A(T) e”TX+ *. 
This relates the constants b ,  in (3.4) and (3.5): 

b, = b- = b,  A(T) = bA(T). (4.2) 

The equation and initial condition for G2 is similar to that for G,. The solution that 
matches the outer flow is 

G2 = B(T) + QT) e2iaz+ *. 
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4.2.  The O(d)  term 

The equation for *3 is the first non-homogeneous equation for the flow in the critical 
layers, and its solution is non-trivial : 

$3YYT+ u:: ySG3YYz-AG3YYYY = ( ~ : - P o ) $ l z  = ia(U:--Po)m)eiaz+*, ( 4 . 3 4  

$3,,(., Y,O) = 0. (4 .3b)  

Focusing on the part of SG3 with wavenumber a simplifies this equation: 

$2) = $,( Y ,  T )  eias + *, 
r$ayyT+ia~L Y ~ $ ~ ~ ~ - A $ ~ ~ ~ ~ ~  = ia(U,"-Po)AI(T). 

Taking a Fourier transform in Y reduces this equation to a first-order partial 
differential equation in the latitudinal wavenumber K and T .  Switching to the 
variables K and = T +  K/aUi reduces this latter equation to a first-order ordinary 
differential equation in K which is easily solved: 

Z t T -  aU; Z3K + h P Z 3  = ia( U: -Po) A(T) 6(K), 

x { H (  - U i )  [H(K + CZU; T) - H(K)]  + H (  U i )  [H(  - K-aUL T )  - H (  - K)]}.  

Because the solutions of the vorticity equation in the critical layers do not decay 
as Y+&- m, their Fourier transforms involve distributions such as the Dirac delta 
function Q(K) .  In addition to this distribution, other distributions and their Fourier 
transforms are used in the analysis that follows. #(K) is the derivative of 6(K), and 
H ( K )  is the Heaviside step function, which is defined as follows: 

The distributions pf ( H (  
integrals : 

K )  K-%) are defined in terms of the finite parts of singular 

+-m +-m 

pf{ H(f-K)K-%f(K)dK= pf(H(fK)K-")f(K)dK= lim 
-cn --m 

- n + 1 ( n - 2 ) !  f'n-''(o)~nal (n-l)! 

for any smooth test function f ( K ) .  The notation pf denotes the finite part of an 
integral. The finite part is found by expanding the integrand in a series about the 
singularity, determining the singular part, and then subtracting this part off. 
Stakgold (1979) discusses distributions and their Fourier transforms in more detail. 

f(n-2) 
( O )  ( f a )  + ( f a)-%+l + ... + 
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The Fourier transform of $3y is found from Z ,  : 

iKmiL4. ,  TI1 ( K )  = 23, 

+B(T)  d(K). (4.4) 

The singular distributions pf(H( f K ) / K )  defined above obey the following relations : 

where y is Euler's constant. This latter relation is used to invert the Fourier transform 
in (4.4). The expression for $ 3 y  in (4.4) is composed of a part which matches the outer 
solution for Y-t  f 00 and another part which oscillates rapidly like exp ( f iaUL YT). 
This latter part presumably matches the transients from the initial-value problem 
in the outer flow which are not considered here. The asymptotic behaviour of &3y 
for large Y which matches the outer solution is the following: 

in( uz-p,, 
21 ULI 

+ A^(T)[H(Y)-H(- Y ) ] + D ( T )  as Y + f c o .  

Matching this with the outer solution (3.4) and (3.5) gives the following jump 
conditions for a* : 

(4.5) 
in(ug-Po) b, a+--a- = 

I ULI 

The Fourier transform of $3 and $, itself are found from the Fourier transform of 
@3Y : 

S(K)  pf(H$F))]}+id(T)d'(K)+l?(T)d(K). ~ 

aU; T 
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pf yq) = F{ T i (  -1  [In 1 * I  - 1 + y3 --in( * )  CH(*) -H(  - )I) ( K ) .  

The asymptotic expression for 6, determines b,,(T) of (3.7) and (3.8): 

4.3. The O ( d )  term 

The equation for $, contains the first instance of nonlinear interactions : 

$4YYT+ u:: Y$4YYx-A$4YYYY = (u:-Po) !LX+$lX$3YYY 

= 2ia(U:-p0) 6(T)e2i”5+iuA^(T)$3YYYe2iax-iuA*(T) ~ 3 y y y +  *, 

C 4 y y ( X ,  Y,O) = 0. 

The interesting part of this solution has wavenumbers 0 and 201. The equation is again 
solved by taking a Fourier transform in Y .  The first non-homogeneous term above 
is analogous to  the non-homogeneous term in (4.3), and it produces an  analogous 
velocity jump. The second two terms, which are forcing by the nonlinear interactions 
of the fundamental mode, produce no velocity jump. Assuming that modes of the 
Kuo equation do not exist for a wave speed of c and a wavenumber of either 0 or 
2a, llr2 must vanish. This means that 

G2 = 0. 

4.4. The O ( d )  term 

The solution of the equation for G5 gives the last piece of information needed to arrive 
a t  the evolution equation for A ,  the jump condition for a,, (T) : 

#6YY!Z‘+ u; Y$5YYx-h$5YYYY = -$1zxT- ’; Y$lxxxdiu: y2$’3YY~ 

+ ( u: -Po) 7b32 + ( Y K -  P l )  $12 + $ l X  $4YYY 9 

$,yy(.,  y ,  0) = w4. 
The initial condition is independent of Y because the initial critical-layer flow is 
assumed not to have a rapid latitudinal variation. This equation is solved in the same 
manner as before, and the velocity jump is calculated. From this the jump in a,,(T) 
is found: 

15 

x e ~ p { - ~ h a ~ U k ~ T ’ ~ ( 3 T - - T ’ - 3 T ” ) ) d T ” d T ’ .  (4.8) 

FLM 142 
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The last term, which is the only nonlinear one, arises from the $ls$4yyy term in 
the vorticity equation. The initial condition produces no velocity jump and therefore 
no jump in a,,(!!'). 

5. The evolution equation 
Equations (3.4), (3.5,), (3.7), (3.8), (4.2) and (4.5)-(4.8) are now used to determine 

the jump in $3y$-$3 d' in (3.9). This leads to  the following evolution equation for 
A :  

,T T-T' 

f1 AT +f2 A + f3 [ 5 T"A(T-T') A(T") A*(T"--T') 
T' 

x e x ~ ( - ~ A a ~ u ~ T ' ~ ( 3 T - T ' - 3 T " ) ) d T " d T '  = 0, (5.1) 

( 5 . 2 ~ )  

where pf denotes the finite part of the singular integral as discussed in 54.2, and the 
constants a+ and b are understood to  depend on yc. 

The nonlinear term above is a type of integral convolution, and hence is not as 
simple as those polynomial nonlinearities which often arise in amplitude evolution 
equations for finite-amplitude waves and instabilities. I ts  form seems to  arise from 
the fact that the equation for the critical-layer flow is first-order in time and 
nonhomogeneous. The solution is therefore the convolution of the non-homogeneity 
and the appropriate Green function. It seems that a similar type of nonlinearity would 
arise in other finite-amplitude wave and stability problems with the following two 
characteristics. First, the critical-layer flow is described by a first- or higher-order 
differential equation in time. That is, the critical-layer flow is not assumed to be 
steady or quasi-steady. Secondly, the nonlinear interactions inside the critical layers 
are stronger than those outside. This is even more likely to  happen in the case of 
more-singular modes, for example, those in stratified shear flows. 

5.1. Range of validity 

The above amplitude-evolution equation is only valid for a certain range of times 
and viscosities. First, time must be large to  allow the transients of the initial-value 
problem to decay, leaving a mode of the Kuo equation. Secondly, time must be much 
smaller than v-l so that the effect of the diffusion of the basic flow is not important. 
Thirdly, the nonlinear terms in the perturbation series for the stream function must 
not become so large as to destroy the ordering. Specifically, this condition is 

Q tT 5:; T' ! P A  (T - T') A (T") A * (T" - T') 
x ~ x ~ { ~ A ~ ~ U ~ ~ T ' ~ ( ~ T - T ' - ~ T " ) )  dT"dT' 4 A ,  (5.3) 
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where the nonlinear term is the size of the velocity jump across the critical layers 
due to nonlinear interactions inside the critical layers. This nonlinear term also 
appears in the evolution equation. 

The nonlinear term above has the following two bounds: 

Y2A(T-T' )A(T")  A*(!Z"'-T') 

Q = ( a2 U2)-! exp { - $S3} dS. r 
These bounds imply the following sufficient restrictions on viscosity and time : 

t 4 [EIIAII]: or v 9 [sllAll]k 

Thus the evolution equation should be valid a t  least for the cases of early-enough 
long times and viscous-enough critical layers. 

One might wonder whether the evolution equation can be valid for very long times, 
even in the absence of viscosity. If the flow is linearly unstable (supercritical), 
nonlinearity would probably not stabilize it. If, on the other hand, the flow was 
linearly stable (subcritical), the linear damping term, which is proportional to pl, 
could constrain the size of A ,  and likewise the size of the integral nonlinearity. 
Disturbances that are initially small enough would probably decay to  zero, and the 
evolution equation in this case would be valid for long tirnes. Disturbances that are 
initially larger would probably blow up in finite time (subcritical instability). The 
situation just described is similar to the behaviour of solutions of the evolution 
equation AT = aA+ bA(AI2 in the case where b is found to  be positive. If a is positive 
then all non-trivial solutions blow up in finite time. If a is negative then solutions 
blow up if the initial condition is large enough. Only if the initial condition is small 
enough and the solution decays to zero is the evolution equation valid for long times. 
There is a non-trivial steady solution for negative a,  but the solution is not stable, 
and therefore not likely to be observed. 

If the ordering (5.3) does break down a few notable things happen. Because the effect 
of nonlinearity has become stronger in the critical layer, a term of the form GlX GnYYY 
that  formerly appeared as a non-homogeneity in the equation for G,,, can no longer 
be treated as such. The term GI, GnYYY now appears in the equation for G,. In  the 
present formalism the first appearance of such a nonlinearity would be the inclusion 
of the term $ l z ~ 3 y y y  in the equation for G,. (The quantities G,,, and $,,, are 
identically zero from the requirements that  they match to an O ( E )  outer solution.) 
It is the critical layer flow 4, that  determines the velocity jump of the leading order 
fundamental mode outside the critical layer. If the $lx $,,,, term is included in the 
equation for I,&, i t  is likely to produce a velocity jump across the critical layer that 
is composed of harmonics as well as the fundamental. Matching conditions would then 
require there to be harmonics in the leading-order outer flow and thus also in the 
leading-order critical-layer flow 

15-2 
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5.2. Vi'iscous limit 

I n  the limit of large h (viscous critical layers) the evolution equation simplifies 
somewhat. The nonlinear term in (5.1) becomes a cubic, reducing the evolution 
equation to the following: 

f,A,+72~+73',I~lZ = 0, 

7 = h-iT, A(T)  E A(h&), 

where Q was defined above. The reason for the simplification of the nonlinearity is 
that in the case of large h the GYyT term in the equations for the critical-layer flow 
becomes negligible in comparison to the h~,,,, term. So, the equation is essentially 
zeroth-order in time, and the flow is quasi-steady. The new time r is slower than the 
old time T .  The parameter f z ,  which corresponds to the departure o f p  from the critical 
value, must be smaller than before so that its effect is the same size as that  of 
nonlinearity and time-dependence. 

6. Conclusion 
There are several contrasts between the present analysis and that of previous 

workers. These involve the treatment of the critical-layer flow, the magnitude of the 
velocity jump across a critical layer, the source and form of the nonlinear term in 
the evolution equation, and the order of the evolution equation. 

The critical-layer flow is assumed to be steady or quasisteady by Schade (1964); 
Benney & Bergeron (1969) ; Davis (1969) ; Kelly & Maslowe (1970) ; Maslowe (1972) ; 
Haberman (1972) ; Benney & Maslowe (1975) ; Redekopp (1977) ; Maslowe & Redekopp 
(1979, 1980); Huerre (1980), Huerre & Scott (1980) and Burns & Maslowe (1983). In 
the present analysis the critical-layer flow is allowed to  be time-dependent. It evolves 
according to a partial differential equation in time and space. The critical layers are 
quasi-steady, however, in the viscous limit discussed in $5.2. Thus the assumption 
of steady or quasi-steady critical layers may be justified in cases where viscosity is 
the dominant effect in the critical layers. If, on the other hand, the effect of viscosity 
does not dominate that of nonlinearity, then the present analysis suggests that the 
critical-layer flow does not become quasi-steady, and should not be assumed to  become 
so. Stewartson (1978) also mentions this point, 

The critical layers considered by Benney & Bergeron (1969) ; Davis (1969) ; Kelly 
& Maslowe (1970) ; Maslowe (1972) ; Haberman (1972) ; Benney & Maslowe (1975) and 
Huerre & Scott (1980) are relatively thin. Also, the nonlinear interactions inside 
the critical layers are strong, and the equations for the fundamental component and 
the harmonics are inextricably coupled. Outside the critical layers, however, the 
equations for the fundamental and the harmonics decouple, and only the fundamental 
is present a t  lowest order. I n  the present analysis the critical layers have not yet 
become so thin. The weakly nonlinear interactions inside the critical layers, however, 
have already begun to affect the flow outside. The equations of motion for the 
fundamental mode and the harmonics decouple everywhere. The ordering studied 
here may persist for a very long time or may break down eventually as the 
nonlinearity grows. In  the case of breakdown the harmonics are likely to become as 
large as the fundamental both inside and outside the critical layers as discussed a t  
the end of $5.1. This would suggest that an analysis that assumes strong nonlinear 
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interactions inside the wittical layers should include the harmonics as well as the 
fundamental a t  lowest order outside the critical layers. Warn & Warn (1978) have 
done this. 

Although Stewartson (1978,1981); Brown and Stewartson (1978a, 1980, 1982a, b )  
and Warn & Warn (1978) consider time-dependent critical layers, as is done here, 
there are significant differences between their analyses and the present one. The 
former assume stronger nonlinear interactions in the critical layers, but no single 
nonlinear evolution equation is derived. The present assumes weakly nonlinear 
critical layers, and it is thereby possible to derive a single evolution equation. 

The velocity jump across a nonlinear, inviscid critical layer was found to be zero 
by Benney & Bergeron (1969); Davis (1969); Kelly & Maslowe (1970); Maslowe 
(1972) ; Haberman (1972) ; Benney & Maslowe (1975) ; Redekopp (1977) ; Maslowe & 
Redekopp (1979,1980) and Huerre & Scott (1980). There is always a non-zero velocity 
jump, however, in the present analysis. This is independent of the size of viscosity 
or boundary conditions. It arises from the time-dependence of the critical-layer flow. 
The size of the velocity jump, however, corresponds to what is found in critical-layer 
flows dominated by viscous effects. 

The nonlinear terms in the amplitude evolution equations derived by Schade 
(1964); Benney & Maslowe (1975); Redekopp (1977); Maslowe & Redekopp (1979, 
1980) and Burns & Maslowe (1983) are polynomials and come only from nonlinear 
interactions outside the critical layers. In  the present analysis the nonlinear terms 
in the amplitude evolution equation come only from nonlinear interactions inside the 
critical layers. This is determined by the scaling argument of $2.  The nonlinearity 
in (5.1) is not a simple polynomial (except in the viscous limit) but is some type of 
convolution integral. As discussed in $5, this form of the nonlinearity seems to arise 
because the critical-layer flow is allowed to be time-dependent. 

The analysis of Huerre & Scott (1980) resembles the present one in the sense that 
the nonlinearity in their evolution equation does come from the critical-layer flow 
and is not simply a polynomial. Their nonlinearity cannot be written in terms of 
elementary functions, however. The reason is that they considered a more strongly 
nonlinear critical layer. They also assumed a quasi-steady critical layer rather than 
a time-dependent one. 

The work of Brown & Stewartson (19783) also resembles somewhat the present 
analysis. The nonlinearity in their evolution equation is not simply a polynomial but 
P A  IAI4. Perhaps they would have obtained an integral convolution term, as in (5.1), 
if they had not in some places treated A as a constant and in other places treated 
it as a function of time. If A is assumed to be constant and viscosity is zero in (5.1), 
the nonlinear term there becomes proportional to T4AIAI2. 

Finally, amplitude-evolution equations for disturbances in marginally stable flows 
with piecewise-constant basic-state vorticity and density are second-order in time. 
Such examples are considered by Drazin (1970); Maslowe & Kelly (1970); Weiss- 
mann (1979) and Hickernell (1983). In  the present analysis, however, the amplitude- 
evolution equation is first-order in time, even if the flow is marginally stable. 

There are several possible extensions of the present results. Wave groups might 
be studied by including a long spacescale. The perturbation analysis would have to 
be carried to even higher orders to derive the effects of dispersion in the case of a 
real group velocity. The methods used here might be applied to problems of 
marginally stable flows in the beta-plane with regular neutral modes, marginally 
stable shear flows with density stratification, and problems with disturbances of large 
horizontal scale (vanishing wavenumber). The evolution equation (5.1) and others 
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derived for disturbances with time-dependent critical layers could be studied 
numerically and analytically. Previous analyses of finite-amplitude disturbances 
have often led to the cubic Schrodinger and Korteweg-de Vries equations and their 
relatives, Solutions of these equations evolve into solitary wavetrains, which have 
been identified with physically observed phenomena. It would be interesting to know 
if the solutions of evolution equations for disturbances with time-dependent critical 
layers decay, equilibrate, become chaotic, or blow up. 

The author would like to thank L. G. Redekopp and P. Huerre for several fruitful 
discussions. Their valuable suggestions contributed to the initiation and completion 
of this work. 
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